skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Osuri, K K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigates the influence of land surface processes on short-spell monsoonal heavy rainfall events under varying soil wetness conditions in India, using the Weather Research and Forecasting Model coupled with two land surface schemes: Noah and SLAB. To represent contrasting soil conditions, four rainfall events are chosen, two in onset (June) and two in active (August) months, during the Indian summer monsoon season. The results indicate that rainfall sensitivity differs notably between onset and active cases. Specifically, in onset, the SLAB overpredicts rainfall to the north of the storm compared to the Noah. The northward displacement of rainfall is attributed to the sensitivity of evapotranspiration to the preferential soil moisture regime in onset. Furthermore, the higher surface air saturation deficit in onset favors plant transpiration, resulting in increased boundary layer moisture. This contributes to enhanced moist static energy, thereby affecting potential vorticity and precipitation. In contrast, evapotranspiration sensitivity is modest during active months, under wet soil and lower surface air saturation deficit conditions. The study reveals the distinct soil moisture feedback mechanisms during the onset and active phases, through variations in evapotranspiration sensitivity. Variations in soil moisture and surface air saturation deficit in these phases play a crucial role in modulating evapotranspiration, which in turn affects precipitation. These findings underscore the importance of land surface initialization and land data assimilation in land–atmosphere interaction studies. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026